Mối quan hệ với năng lượng kích hoạt Gibbs Năng_lượng_hoạt_hóa

Trong phương trình Arrhenius, thuật ngữ năng lượng kích hoạt (E a) được sử dụng để mô tả năng lượng cần thiết để đạt đến trạng thái chuyển tiếp và mối quan hệ theo cấp số nhân k = A exp (- E a / RT). Trong lý thuyết trạng thái chuyển tiếp, một mô hình phức tạp hơn về mối quan hệ giữa tốc độ phản ứng và trạng thái chuyển tiếp, một mối quan hệ toán học tương tự bề ngoài, phương trình Eyring, được sử dụng để mô tả tốc độ của phản ứng: k = (k B T / h) exp (C G ‡ /RT). Tuy nhiên, thay vì mô hình hóa sự phụ thuộc nhiệt độ của tốc độ phản ứng theo phương pháp luận, phương trình Eyring mô hình bước cơ bản của từng phản ứng. Do đó, đối với một quá trình nhiều bước, không có mối quan hệ đơn giản giữa hai mô hình. Tuy nhiên, các dạng chức năng của phương trình Arrhenius và Eyring là tương tự nhau, và đối với quy trình một bước, các tương ứng đơn giản và có ý nghĩa hóa học có thể được rút ra giữa các tham số Arrhenius và Eyring.

Thay vì sử dụng E a, phương trình Eyring sử dụng khái niệm năng lượng Gibbs và ký hiệu Δ G ‡ để biểu thị năng lượng Gibbs kích hoạt để đạt được trạng thái chuyển tiếp. Trong phương trình, k B và h lần lượt là các hằng số Boltzmann và Planck. Mặc dù các phương trình trông tương tự nhau, điều quan trọng cần lưu ý là năng lượng Gibbs chứa một thuật ngữ entropic ngoài thuật ngữ entanpi. Trong phương trình Arrhenius, hạn entropy này được chiếm bởi các yếu tố trước mũ Một. Cụ thể hơn, chúng ta có thể viết năng lượng kích hoạt miễn phí Gibbs theo entanpy vàentropy kích hoạt: Δ G ‡ = Δ H ‡ - T Δ S ‡. Sau đó, đối với phản ứng không phân tử, một bước, các mối quan hệ gần đúng E a = H ‡ + RT và A = (k B T / h) exp (1 + Δ S ‡ / R) giữ. Tuy nhiên, lưu ý rằng trong lý thuyết Arrhenius thích hợp, A độc lập với nhiệt độ, trong khi ở đây, có sự phụ thuộc tuyến tính vào T. Đối với quy trình đơn phân tử một bước có chu kỳ bán rã ở nhiệt độ phòng khoảng 2 giờ, Δ G ‡ xấp xỉ 23 kcal / mol. Đây cũng là độ lớn của E a đối với phản ứng xảy ra trong vài giờ ở nhiệt độ phòng. Do tầm quan trọng tương đối nhỏ của T Δ S ‡ và RT ở nhiệt độ bình thường đối với hầu hết các phản ứng, trong bài giảng luộm thuộm, E một, Δ G ‡, và Δ H ‡ thường lồng việc và tất cả được gọi là "năng lượng kích hoạt".

Tuy nhiên, toàn bộ sự thay đổi năng lượng tự do của một phản ứng không phụ thuộc vào năng lượng kích hoạt. Phản ứng vật lý và hóa học có thể là exergonic hoặc endergonic, nhưng năng lượng kích hoạt không liên quan đến tính tự phát của phản ứng. Sự thay đổi năng lượng phản ứng tổng thể không bị thay đổi bởi năng lượng kích hoạt.